Temporal and spatial profiles of pontine-evoked monoamine release in the rat's spinal cord.
نویسندگان
چکیده
In the spinal cord, the monoamine neurotransmitter norepinephrine, which is released mainly from fibers descending from the dorsal pons, has major modulatory effects on nociception and locomotor rhythms. To map the spatial and temporal patterns of this release, changes in monoamine level were examined in laminae I-VIII of lumbar segments L3-L6 of halothane-anesthetized rats during pontine stimulation. The changes were measured through a carbon fiber microelectrode at 0.5-s intervals by fast cyclic voltammetry, which presently is the method of best spatiotemporal resolution. When different pontine sites were tested with 20-s pulse trains (50-to 200-microA amplitude, 0.5-ms pulse width, and 50-Hz frequency) during measurement in the dorsal horn (lamina IV), the largest consistent increases were produced by the locus ceruleus, although effective pontine sites extended 1.5 mm dorsally and ventral from the locus ceruleus. When the locus ceruleus stimulus was used to map the spinal cord, increased levels were always seen in lamina I and laminae IV-VIII, whereas 50% of sites in laminae II and III showed substantial decreases and the rest showed increases. These increases typically had short latencies [4.5 +/- 0.4 (SE) s] and variable decay times (5-200 s), with peaks occurring during the stimulus train (mean rise-time: 12.0 +/- 0.6 s). The mean peak level was 544 +/- 82 nM as estimated from postexperimental calibration with norepinephrine. Other significant laminar differences included higher mean peak concentrations (805 nM) and rise times (14.9 s) in lamina I and shorter latencies in lamina VI (3.2 s). Peak concentrations were inversely correlated with latency. When stimulation frequency was varied, increases were disproportionately larger with faster frequencies (> or =50 Hz), hence extrajunctional overflow probably contributed most of the signal. We conclude, generally, that pontine noradrenergic control is exerted on widespread spinal laminae with a significant component of paracrine transmission after several seconds of sustained activity. Relatively stronger effects prevail where nociceptive transmission (lamina I) and locomotor rhythm generation (lamina VI) occur.
منابع مشابه
Monoamine Release in the Cat Lumbar Spinal Cord during Fictive Locomotion Evoked by the Mesencephalic Locomotor Region
Spinal cord neurons active during locomotion are innervated by descending axons that release the monoamines serotonin (5-HT) and norepinephrine (NE) and these neurons express monoaminergic receptor subtypes implicated in the control of locomotion. The timing, level and spinal locations of release of these two substances during centrally-generated locomotor activity should therefore be critical ...
متن کاملSteady-state levels of monoamines in the rat lumbar spinal cord: spatial mapping and the effect of acute spinal cord injury.
Monoamines in the spinal cord are important in the regulation of locomotor rhythms, nociception, and motor reflexes. To gain further insight into the control of these functions, the steady-state extracellular distribution of monoamines was mapped in the anesthetized rat's lumbar spinal cord. The effect of acute spinal cord lesions at sites selected for high resting levels was determined over ap...
متن کاملDeprenyl increases synaptophysin and choline acetyltransferase in rat after sciatic nerve axotomy
Neuroprotective effect of deprenyl on motoneurons of spinal cord after axotomy of peripheral nerves such as sciatic has been well established. Deprenyl is an inhibitor of monoamine oxidase type-B (MAO-B). The main function of this agent is the release of neurotransmitters from pre-synaptic terminals. Acetylcholine is a neurotransmitter that is synthesized by choline acetyltransferase (ChAT) and...
متن کاملEffects of Biodegradable Polymers on the Rat's Damaged Spinal Cord Neural Membranes
The overall goal of this study was to identify the appropriate biomaterials able to facilitate the regeneration in rat's injured adult spinal cord. Acute damage to axons is manifested as a breach in their membranes, ionexchange distortion across the compromised region, local depolarization and even conduction block. It would be of particular importance to interrupt the progress of events h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 89 6 شماره
صفحات -
تاریخ انتشار 2003